Q.1 A B C D	The magnitude of the force experienced by a unit north pole at any point in the field is called Magnetic Induction Intensity of Magnetization Magnetic field strength None
Ans	Magnetic field strength
Q.2 A B C D	CGS unit of Magnetic field is Gauss N/A-m Nm Weber/m ²
Ans	Gauss
Q.3 A B C D	MKS unit of Magnetic field is Gauss N/A-m Nm N/m ²
Ans	N/A-m
Q.4 A B C D	Magnetic flux lines passing normally through unit area is known as Magnetic field strength Magnetic Induction Magnetic Susceptibility None
Ans	Magnetic Induction
Q.5 A B C D	Unit of Magnetic Induction is Tesla Nm N/m² None
Ans	Tesla
Q.6 A B C	Magnetic moment per unitis called Intensity of Magnetization. Area Volume Length None
Ans	Volume

Q.7	The ratio of intensity of magnetization to the magnetic field strength is called as
A	Magnetic Permeability
В	Magnetic Induction
C	Magnetic Susceptibility
D	None
Ans	Magnetic Susceptibility
Q.8	Permeability of free space is equal to
À	$4\pi \times 10^{-9} \text{H/m}$
В	$4\pi \times 10^{-7} \text{H/m}$
C	$4\pi \times 10^{-10} \text{H/m}$
D	$4\pi \times 10^{-19} \text{H/m}$
Ans	$4\pi \times 10^{-7} \text{H/m}$
Q.9	The ratio of magnetic induction(B) produced in the material to the magnetizing field (H) is called
A	Magnetic Permeability
В	Magnetic Induction
C	Magnetic Susceptibility
D	None
Q.10 A B C D	The substance for which value of χ is negative is called Paramagnetic Diamagnetic Ferromagnetic Ferrimagnetic
Ans	Diamagnetic
Q.11	Which of the following is not a Paramagnetic substance?
A	Platinum
В	Bismuth
C	Solutions of salts of iron
D	Oxygen
Ans	Bismuth
Q.12	Which of the following is a Diamagnetic substance?
A	Platinum
В	Manganese
C	Antimony
D	Steel
Ans	Antimony
Q.13	Which of the following is not a Ferromagnetic substance?
A	Iron

B C D	Nickel Cobalt Zink
Ans	Zink
Q.14 A	Currie-Weiss law is represented by $\chi \propto \frac{1}{T-Tc}$
В	$\chi \propto \frac{1}{Tc}$
C	$\chi \propto \frac{1}{T}$
D	$\chi \propto \frac{1}{(T-Tc)^2}$
Ans	$\chi \propto \frac{1}{T-Tc}$
Q.15 A B C D	The material with lack of permanent magnetic dipoles are called Paramagnetic Diamagnetic Ferromagnetic None
Ans	Diamagnetic
Q.16 A B C D	Superconductivity based on phenomenon Magnetism Electrostatic Electrical None
Ans	Magnetism
Q.17 A B C D	BCS theory explains superconductivity based on Pairing of electron Pairing of proton Pairing of neutron None
Ans	Pairing of electron
Q.18	In superconductivity resistivity of conductor becomesat critical temperature.
Α	Zero

- В Infinity
- C One
- D Thousand

Ans Zero

- Q.19 Critical temperature of Mercury is
- 4.15
- 8.12 В
- \mathbf{C} 5.9
- D 3.2

Ans 4.15

- Q.20 Meissener Effect is _____
- Penetration of flux lines in material when cooled below critical temperature.
- В Expulsion of magnetic flux lines from specimen when cooled below critical temperature.
- C Expulsion of magnetic flux lines from specimen when heated above critical temperature.
- D None

Expulsion of magnetic flux lines from specimen when cooled below critical temperature. Ans

- Q.21 The magnetic field strength at which superconductivity get destroyed is called as_____.
- Critical magnetic field A
- Applied magnetic field В
- \mathbf{C} External magnetic field
- D None

Ans Critical magnetic field

The variation of critical magnetic field with temperature is given by reletation _____. Q.22

A
$$Hc(T) = Hc(0)[1 - (\frac{T}{Tc})^2]$$

B
$$Hc(T) = Hc(0)[1 - \frac{T}{Tc}]$$

C
$$Hc(T) = Hc(0)[1 + \frac{T^2}{Tc^2}]$$

A
$$Hc(T) = Hc(0)[1 - (\frac{T}{Tc})^2]$$
B $Hc(T) = Hc(0)[1 - \frac{T}{Tc}]$
C $Hc(T) = Hc(0)[1 + \frac{T^2}{Tc^2}]$
D $Hc(T) = Hc(0)[1 + (\frac{T}{Tc})]^2$

Ans	$Hc(T) = Hc(0)[1 - (\frac{T}{Tc})^2]$
	$Tc^{\prime\prime}$
0.22	
Q.23	Material can be converted from superconducting state to normal state when
A	$T < Tc \& H \ge Hc$
В	T < Tc & H < Hc
C	T < Tc & H << Hc
D	None
Ans	$T < Tc \& H \ge Hc$
Q.24	A steady current induced in superconducting ring held below critical temperature is called .
A	Persistent current
В	Alternating current
С	Direct current
D	None
Ans	Persistent current
Q.25	Persistent current remains in superconductor for
A	10^5 years
В	10 years
C	10^2 years
D	10^3 years
Ans	10 ⁵ years
Q.26	When a superconducting material is placed in external magnetic field then magnetic
	induction inside the specimen is
Α	$\mathbf{B} = 0$
В	$\mathbf{B} = \infty$
С	$\mathbf{B} = 100$
D	$\mathbf{B} = 10$
_	
Ans	$\mathbf{B} = 0$
0.27	When a manufacture material to 1 to 1 to 1 to 2 for 11 d at
Q.27	When a superconducting material is placed in external magnetic field then the susceptibility of the material becomes
A	$\chi = 1$
В	$\chi = -1$
C	$\chi = 0$
D	$\chi = 100$
Ans	$\chi = -1$

Q.28	When a superconducting material is placed in external magnetic field then the
Q.20	susceptibility of the material becomes
Α	Perfect diamagnet
В	Paramagnet
С	Ferromagnet
D	None
Ans	Perfect diamagnet
Q.29	Which of the following is Type I superconductor?
A	Nb ₃ Sn
В	Nb -Ti
C	Al
D	None
A == 0	A1
Ans	Al
Q.30	Which of the following is Type II superconductor?
A	Nb ₃ Sn
В	Lead
C	Al
D	Indium
Ans	Nb ₃ Sn
Q.31	Low temperature superconductors that have temperature
A	Below 20 K
В	Above 20 K
С	Above 77 K
D	None
Ans	Below 20 K
0.22	
Q.32	High temperature superconductors that have temperature
A B	Below 20 K Above 20 K
С	Above 20 K Above 77 K
D	None
<u> </u>	THORE
Ans	Above 77 K
11110	110010 11 11
Q.33	Type II superconductors hascritical field.
A	One
В	Two
С	Three
D	Four

Ans	Two
Q.34	In AC Josephson Effect frequency of alternating current is given by
A	$\frac{2\frac{ev}{h}}{ev}$
В	<u>ev</u>
	$\frac{\overline{h}}{2e}$
C	
-	$\frac{\overline{h}}{2}$
D	$\frac{2}{h}$
	<u>h</u>
Ang	ev ev
Ans	$2\frac{ev}{h}$
Q.35	Calculate the critical current for a wire of lead having a diameter of 1 mm at 4.2 K. The critical temperature for lead is 7.18 K and $H_c(0)=6.5 \times 10^4$ A/m.
A	$2.28 \times 10^4 A/m$
В	$4.28 \times 10^4 A/m$
C	$2.28 \times 10^6 A/m$
D	$4.28 \times 10^6 A/m$
	·
Ans	$4.28 \times 10^4 A/m$
Q.36	The transition temperature for lead is $7.2K$. However, at $5K$ it loses the superconducting property if subjected to magnetic field of $3.3x10^4$ A/m. Find the maximum value of H which will allow the metal to retain its superconductivity at $0K$.
A	$16.37 \times 10^7 \mathrm{A/m}$
В	$6.37 \times 10^4 \text{A/m}$
С	$6.37 \times 10^7 \text{A/m}$
D	$16.37 \times 10^4 \text{ A/m}$
Ans	$6.37 \times 10^4 \text{A/m}$
Q.37	The critical field of niobium is 1×10^5 A/m at 8 K and 2×10^5 at 0 K. Calculate the
	transition temperature of the element.
A	11.3 K
В	21.3 K
1	
C	1.3 K
C D	1.3 K 31.3 K

Ans	11.3 K
Q.38	The transition temperature for lead is 7.26 K. The maximum critical field for the material is 8×10^5 A/m. Lead has to be used as a superconductor subjected to a magnetic field of 4×10^4 A/m. At what maximum temperature it can be operated.
A	9.08 K
В	17.08 K
С	27.08 K
D	7.08 K
Ans	7.08 K